Analysis of ringing effects due to magnetic core materials in pulsed nuclear magnetic resonance circuits

نویسندگان

  • Neelam G. Prabhu Gaunkar
  • N. R. Y. Bouda
  • Ikenna C. Nlebedim
  • Ravi L. Hadimani
  • I. Bulu
  • Neelam G. Prabhu
  • David C. Jiles
  • N. Prabhu Gaunkar
  • I. C. Nlebedim
  • R. L. Hadimani
  • K. Ganesan
  • Y. Q. Song
  • M. Mina
  • D. C. Jiles
چکیده

This work presents investigations and detailed analysis of ringing in a non-resonant pulsednuclear magnetic resonance (NMR) circuit. Ringing is a commonly observed phenomenon in high power switching circuits. The oscillations described as ringing impede measurements in pulsed NMR systems. It is therefore desirable that those oscillations decay fast. It is often assumed that one of the causes behind ringing is the role of the magnetic core used in theantenna (acting as an inductive load). We will demonstrate that an LRC subcircuit is also set-up due to the inductive load and needs to be considered due to its parasitic effects. It is observed that the parasitics associated with the inductive load become important at certain frequencies. The output response can be related to the response of an under-damped circuit and to the magnetic core material. This research work demonstrates and discusses ways of controlling ringing by considering interrelationships between different contributing factors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational study of energetic, stability, and nuclear magnetic resonance of BN nanotube as a nanosensor

Now a day study on boron nitrid nanotubes are in considerable attetion due to their unique properties in different field of science. In this letter, after final optimization, thermodynamic properties analysis, stabilities, electronic structure and nuclear magnetic resonance parameters including σ isotropic and σ anisotropic tensors and asymmetric parameters of 15N and 11B nuclei are calculated....

متن کامل

Iron-gold (Fe2O3@Au) core-shell nano-theranostic for magnetically targeted photothermal therapy under magnetic resonance imaging guidance

Introduction: Photothermal therapy (PTT) is a nanotechnology-assisted cancer hyperthermia approach in which the interaction between laser light and plasmonic nanoparticles generates a localized heating for thermoablation of the tumor. Recent efforts in the area of PTT follow two important aims: (i) exploitation of targeting strategies for preferential accumulation of plasmonic ...

متن کامل

NUCLEAR MAGNETIC RESONANCE STUDY OF THE STRUCTURE OF GLYOXALDIHYDRAZONE

Study of the nuclear magnetic resonance spectra of glyoxaldihydrazone in dimethylsulfoxide and deuterochlorofonn leads to the conclusion that this compound exists predominantly in non-chelate structure

متن کامل

Designing and Fabrication of a New Radiofrequency Planar microcoil for mini-Nuclear Magnetic Resonance

Introduction Radiofrequency planar microcoils are used to increase the resolution of magnetic resonance images of small samples. In this study, we aimed to design and fabricate a spiral planar microcoil constructed on a double-sided printed circuit board (PCB). It has four rings with an internal diameter of 241 microns tuned and matched at 63.8 MHz. Materials and Methods To achieve the maximum ...

متن کامل

Effect of coating thickness of iron oxide nanoparticles on their relaxivity in the MRI

Objective(s):Iron oxide nanoparticles have found prevalent applications in various fields including drug delivery, cell separation and as contrast agents. Super paramagnetic iron oxide (SPIO) nanoparticles allow researchers and clinicians to enhance the tissue contrast of an area of interest by increasing the relaxation rate of water. In this study, we evaluate the dependency of hydrodynamic si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016